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Abstract

Decision making in robotics often involves computing an optimal action for a
given state, where the space of actions under consideration can potentially be large
and state dependent. Many of these decision making problems can be naturally
formalized in the multiclass classification framework, where actions are regarded
as labels for states. One powerful approach to multiclass classification relies on
learning a function that scores each action; action selection is done by returning
the action with maximum score. In this work, we focus on two imitation learning
problems in particular that arise in robotics. The first problem is footstep predic-
tion for quadruped locomotion, in which the system predicts next footstep loca-
tions greedily given the current four-foot configuration of the robot over a terrain
height map. The second problem is grasp prediction, in which the system must
predict good grasps of complex free-form objects given an approach direction for
a robotic hand. We present experimental results of applying a recently developed
functional gradient technique for optimizing a structured margin formulation of
the corresponding large non-linear multiclass classification problems.

1 Introduction

Robot manipulation tasks usually involve a large number of actions possible at a given state. Impor-
tantly, skilled humans operators are often quite adept at choosing effective actions for a given state
of the robot and can demonstrate this correct behavior. It is usually quite difficult for such an ex-
pert to articulate their strategy however; the decision is often a nonlinear combination of numerous
desiderata such as stability, energy minimization, actuator limits, and future intent. It is much easier
for the operator to demonstrate optimal actions than it is to carefully enumerate the complex function
being optimized to produce the action. In imitation learning, we study algorithms that generalize
from such operator demonstration to effectively chose actions for new states. Many of these learning
problems can be naturally formalized in the multiclass classification framework, where actions are
regarded as labels for states [1, 2]. This multiclass imitation learning approach is especially suited
to robot applications because demonstration provides a natural method for an operator to specify
optimality as well as to specify actions that the operator considers as “close” or equivalent (due to
symmetries, for example).

The multiclass techniques we study in this paper learn a function that operates by scoring each
action and returning the maximum scoring action as the optimal choice. The goal of the learning
procedure is to find a score function that well captures the demonstrated behavior; in essence, the
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Figure 1: Experimental testbeds: Boston Dynamics’ LittleDog quadruped robot (left), and the Barrett Tech-
nologies three-fingered hand (right).

procedure searches for a score function that makes the human choices appear optimal. Recently, a
framework for designing such large multiclass predictors has been developed by using functional
gradient techniques to optimize a simple structured-margin criterion. This approach allows us to
adapt existing, “off-the-shelf” regression (or binary classification) techniques to learn the potentially
complicated score function, making it a modular and simple to implement technique.

Our interest in this work is the demonstration of the multiclass learning technique to solving prob-
lems in robotic grasping and quadruped locomotion. From the machine learning viewpoint there is
a surprising fundamental unity to these tasks. In both cases, the desired policy involves complex
score functions, while demonstrations of desired behavior can be provided by expert operators at
relatively little expense. Additionally, both problems have a large number of actions and can be
straightforwardly optimized for the optimal action. We believe that many related robotics tasks have
similar properties and may benefit from the approach taken here.

In what follows, we start by briefly introducing the learning technique before describing the experi-
ments in detail. We finish with some concluding statements and comments on future work.

2 Structured-margin techniques

Many problems in imitation learning can be posed naturally as multiclass classification problems.
However, while traditional multiclass classification problems often have a relatively small number
of possible class labels (typically from 3-26), multiclass classification formulations of imitation
learning problems often have many class possibilities.

For instance, in our grasping experiments below we take the set of class labels to be the set of
preshape configurations a robot hand can take on given an approach direction. The corresponding
classification problem has 2496 labels, orders of magnitude more than is typically considered in
traditional multiclass problems. Because there are so many possible labels, traditional (unstructured)
margin-based classification models often fail since no notion of label similarity is built into the
learning system. In what follows, we review the structured margin multiclass classification setting
of [3] used throughout this paper which explicitly utilizes information of this sort.

Let X be the input domain (state space) and assume that the set of labels (actions) can potentially be
different for each domain element x ∈ X . We denote the set of labels for a given x by Yx, and the
combined set of all labels by Y =

⋃
x∈X Yx. A multiclass classifier is defined by a score function

s : X × Y → R over these two sets. Given x ∈ X , the classifier predicts the optimal scoring label

y∗ = arg max
y∈Yx

s(x, y) = arg max
y∈Yx

sx(y), (1)

where we denote sx(y) = s(x, y) for notational convenience.

The algorithm [2] we describe here for solving large-scale multiclass classification problems is very
general. In [1] we demonstrate the success of a similar technique on problems for which the number



of class labels is exponential is some domain variable; in principle the set of labels can be infinite.
For our purposes, the only requirement is that the optimization in Equation 1 required for making
predictions can be performed efficiently. In the experiments presented in this paper, the number of
labels, while large, is small enough that the optimization can be implemented by a simple brute-force
enumeration.

2.1 Structured-margin loss function

Given a data setD = {(xi, yi)}Ni=1, our algorithm optimizes a convex upper bound on a loss function
L(xi, yi, y). This loss function specifies the basic notion of loss on choosing label y for example xi

when the true label is yi. For notational convenience, we often denoted the loss function as Li(y)
and the set of labels Yxi

as Yi. This upper bound is given by

r[s] =
1
N

N∑
i=1

(
max
y∈Yi

{si(y) + Li(y)} − si(yi)
)

. (2)

If the loss function is always zero Li = 0, this function measures the sub-optimality of the example
label. Minimizing this zero-loss objective, attempts to find a score function for which the example
labels are scored higher than all other labels. Choosing nonzero loss, however, improves general-
ization by introducing a notion of structured-margin. Instead of requiring only that the example
label is scored higher than all other labels, we require it to be better than each label y by an amount
proportional to how bad we deem that label to be as measured by our loss function Li(y).

When the number of classes is small a commonly used loss function is the binary loss. In this case,
Li(y) = 0 when y = yi and 1 otherwise, and the margin loss of Equation 2 reduces to the well-
known SVM loss [4]. However, for multiclass classification problems that arise in imitation learning
there is often a natural notion of loss; the structured margin adapts accordingly for such problem.

Within the structured setting, the relative size of the required margin is allowed to vary from label
to label proportionally to the loss of the label in question. If the loss of the label is large, the label is
very different from the desired label and the margin term is large. However, if the loss of the label
is small, the label is considered similar to the desired label and the margin term is small. Intuitively,
we allow the learned score on labels similar to the example label to be similar to the example score,
but force the score on vastly different labels to be much smaller than that on the example label. The
experimental section (Section 3) details natural loss functions that arise for both the footstep and
grasp prediction problems.

2.2 Functional gradient optimization

In [5], a simple but effective subgradient method was developed for optimizing the upper bound
given in Eqn. 2 assuming the score function is linear in a set of features fi(y) extracted from the
combined example xi ∈ X and hypothesized label y ∈ Yi. The linearity requirement is removed
in [1] by generalizing the subgradient method to learning nonlinear score functions using functional
gradient techniques like those first formulated in [6] and [7].

Denoting the feature vector extracted for the pair xi ∈ X and y ∈ Yi as fi(y), the functional
gradient1 of the structured-margin loss (Eqn. 2) is given as

∇sR[s] = ∇s
1
N

N∑
i=1

(
max
y∈Yi

(s(fi(y)) + Li(y))− s(fi(yi))
)

=
1
N

N∑
i=1

(
δfi(y∗) − δfi(yi)

)
, (3)

where we denote the loss-augmented prediction as y∗i = arg maxy∈Yi
{s(fi(y)) + Li(y)}. A full

derivation of this algorithm can be found in [1]; we provide here only the high level intuition.
The functional gradient is the direction in the space of score functions that would most improve

1Here we have used the property that the functional gradient of a function evaluated at a point is the delta
function centered at that point. In this case,∇ss(fi(y)) = δfi(y).



Algorithm 1 Imitation learning via functional exponential gradient descent

1: procedure IMITATIONLEARNING( Training set {fi(·), yi,Li(·)}Ni=1, Step size sequence {αt},
Max iterations T )

2: initialize s = 0
3: for t = 1 . . . T do
4: initialize D = ∅
5: for i = 1 . . . N do
6: find y∗ = arg maxy∈Yi{s(fi(y)) + Li(y)}
7: set D ← D ∪ {(fi(yi), 1)}
8: set D ← D ∪ {(fi(y∗),−1)}
9: end for

10: train binary classifier/regressor on D to produce ht

11: set s← s + αtht

12: end for
13: return s =

∑T
t=1 αtht.

14: end procedure

performance on the loss function r[s]. Intuitively, to misclassified examples the functional gradient
specifies a desire to increase the score on the demonstrated action thereby making the classifier more
likely to choose it during the next iteration, and a decrease in score to the action that the classifier
incorrectly chooses at the current iteration of learning thereby making the classifier less likely to
choose it again during the next iteration.

Because of the delta functions, the functional gradient as defined above is tied particularly to the
training examples and therefore does not generalize to new states. To provide generalization to new
states we rely upon the generalization ability of standard classification and regression approaches.
We “project” the functional gradient onto a simpler functional form that generalizes. For instance,
we may try to find a neural network in a hypothesis spaceH of such functions that is both simple (low
complexity, high prior probability) and represents the functional gradient well. Such a projection can
be derived by maximizing the inner product with the negative functional gradient over the hypothesis
space.

h∗ = arg max
h∈H
〈h, −∇sR[s]〉 (4)

= arg max
h∈H

1
N

N∑
i=1

〈h, δfi(yi) − δfi(y∗)〉 (5)

= arg max
h∈H

1
N

N∑
i=1

(h(fi(yi))− h(fi(y∗))) . (6)

This projection step can be implemented as a reduction to binary classification or regression using
a data set generated by collecting two examples for each xi, one corresponding to the correct la-
bel (fi(yi), 1), and another corresponding to the current loss-augmented prediction (fi(y∗),−1).
Training a binary classifier using this data set returns a function approximating h∗. Intuitively, for
each i, the first example attempts to make h∗ have a positive value at fi(yi) so that adding h∗ to
the previous hypothesis will increase the function at that point thereby increasing the score func-
tion of the correct label. Similarly, the second example attempts to make h∗ negative at the current
loss-augmented label, so as to reduce the score function at that point.

The technique generalizes gradient descent in the following sense: we identify the negative func-
tional gradient of the loss function, project it onto a tangible space of functions using a binary
classification or regression algorithm, and take a step in the direction of the resulting learned ap-
proximator.

This procedure leads to a simple iterative algorithm. Given a step size sequence {αt}∞t=1, the algo-
rithm proceeds as shown in Figure 2.2. In our experiments, we use αt = γ√

t
where γ is the initial

step size.



Figure 2: Results on a number of training examples of foot placement prediction demonstrating qualitative
accuracy of predictions. The original configuration is depicted as red lines connecting each of the four feet.
The example step is shown in magenta, and the predicted footstep (centered at the minimum of the rendered
cost function), is given in green. In the rendered cost function, bluish shades are low cost while reddish shades
are high cost. In all cases, this is overlaid atop the terrain height map.

2.3 Exponentiated gradient variant

The algorithm above is a generalization of standard gradient descent. In many cases, for instance
when we wish the score function to be always positive or when we add together scores over multiple
states (i.e. when performing minimum cost planning instead of brute force enumeration), we instead
generalize a powerful related method: exponentiated gradient descent [8, 2]. Implementing the
functional version of exponentiated gradient descent is a simple modification of the algorithm above.
We replace the update of the score function with an exponentiated variant:

s← exp{log(s) + αtht}. (7)

Exponentiated gradient descent share similar convergence guarantees [9], but implements a different
prior over the space of score functions. It places large prior weight on score functions with a great
deal of dynamic range. We note that in this paper (unlike in [2]), exponentiating the scores does not
change the argmax since we are not adding together scores over multiple states. It does, however,
change the effect of the margin term. The exponentiated gradient variant was used in the grasp
prediction experiments described below in Section 3.

3 Applications

This section details experiments using the functional gradient imitation learning techniques de-
scribed above on two problems: quadruped locomotion, and grasp planning. These problems are
detailed in Sections 3.1 and 3.2, respectively.

3.1 Quadruped Locomotion

The quadruped (Boston Dynamics’ LittleDog) used for this experiment is depicted in Figure 1. The
input state-space X consists of a four foot quadruped pose situated at a particular location of a 2.5-
dimensional height map (specifying a height for each x-y location), in conjunction with an “active”
foot which is to be moved next. For a given x, the prediction range Yx is the set of all possible next
step locations for the action foot. In these experiments, we take this region to be a square centered
at a point computed from the current four foot configuration. This region is discretized into 961
(= 31× 31) locations.

Training examples are extracted from the intermediate poses and next step foot locations chosen
by a human operator remote controlling the robot across the terrain. While we could apply a full



Figure 3: Generalization of quadruped footstep placement. The four foot stance was initialized to a config-
uration off the left edge of the terrain facing from left to right. The images shown demonstrate a sequence of
footsteps predicted by the learned greedy planner using a fixed foot ordering. Each prediction starts from result
of the previous. The first row shows the footstep predictions alone; the second row overlays the corresponding
cost region (the prediction is the minimizer of this cost region). The final row shows footstep predictions made
over flat ground along with the corresponding cost region showing explicitly the kinematic feasibility costs that
the robot has learned.

planning based solution to the imitation learning problem as in [1], a one-step look-ahead, greedy
approach approach is sufficient for the terrains we considered.

Features for each possible next location fall into two categories: action features and terrain features.
Action features account for the kinematic constraints of the robot as they manifest themselves in the
four-foot configuration. They include the distance from the hypothesized next-step location ν and
each of the original locations of the feet as well as the radius of the inscribed circle of the support
triangle resulting from that action. Terrain features, on the other hand, contain information describ-
ing local variation in the terrain. For these experiments a very simple set of terrain features was
used. Seven smoothings of the height map were generated by performing Gaussian convolutions,
and the feature vector was extracted as the vector 8 responses (including the raw height) at the pixel
corresponding to the desired foot location.

We apply the the above gradient boosting algorithm to this data using the following loss function

L(ν, νi) = 1− exp
{
− (ν − νi)2

2σ2

}
(8)

where ν and νi are the hypothesis next foot location and the example next foot location, respectively.
This loss function increases rapidly from 0 at νi and saturates to 1 at a distance regulated by the
hyperparameter σ. The space H of regression algorithms we chose was small. It consisted of one
hidden-layer neural networks which were trained using back-propagation.

Figure 2 shows select training examples along with their corresponding next step predictions. In
each image, the original four-foot pose is shown with red lines connecting each foot to emphasize
the relative orientation of the original locations of the feet. The example and predicted next step are
depicted in magenta and green, respectively, and the learned cost map over the local search region is
colored with blue shades corresponding to low cost graduating to red shades corresponding to high
cost. All of this is superimposed over the terrain height map where the example resides.

The learned cost function combines the kinematic constraints of the robot with local terrain variation
as can be seen in the images. Without terrain input, the cost function represents the forward stepping
bias seen throughout the examples. The variation seen in the cost functions learned for each example
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Figure 4: Grasp prediction results on ten hold-out examples. The training set consists of 23 training examples;
each test result was generated by holding the example in question out and training on the rest.

comes from terrain components. The system learns to trade off reachability, a forward stepping
bias, and local terrain considerations in a way that mimics the behavior exemplified in the data. For
instance, the human operator had a tendency to step in local convexities (i.e. cracks) to improve
walking stability and robustness. In a number of these examples, the system tends to place lower
cost to such regions.

Generalization of the learned footstep predictor is demonstrated in Figure 3. The top row of this
figure shows four steps of a footstep sequence over rough terrain generated by initializing the system
to a nominal four foot configuration off the left hand edge of the terrain, and recursively predicting
each next foot location given the current configuration using a fixed foot ordering. The middle row
shows the same generated sequence segment along with the associated learned cost function used
to predict each step. The final row shows a footstep sequence generated in the absence of terrain
demonstrating explicitly the kinematic feasibility profile that the robot has learned from the data.

3.2 Grasp planning

Grasp planning is often framed as an optimization over a grasp metric which evaluates the quality of
a grasp configuration relative to the object being grasped. Variation in planners can be categorized
into the method used to discretize the continuous space of grasp configurations, and the grasp met-



Figure 5: The top row shows three grasps of the same object from varying approach direction. The bottom
rows shows from two perspectives a unique grasp that arises because the current feature set does not include
information about fragility or flexibility of various parts of the object. Were this object perfectly rigid, this
would be a reasonable grasp. The framework allows for easy addition of such extra features.

ric begin optimized. The discretization of the grasp space can be further segmented into a general
approach direction for the hand and the configuration of the hand given the approach direction. In
this work we assume the approach direction has been given to us by external means for two rea-
sons. First, [10] demonstrated that a good approach direction/point can be predicted from binocular
imagery, and in that work generalization of pinch grasping using a simple parallel jaw gripper was
demonstrated for a number of previously unseen objects. Second, the true approach direction chosen
for a given object is very strongly influenced by task parameters as well as environmental consider-
ations, like workspace obstacles and the capabilities of the arm to which the hand is attached.

The hand used for this experiment (Barrett technology’s Barrett Hand) is depicted in Figure 1. This
hand has three fingers, each of which has two joints driven by a single actuator. When moving freely,
the distal joint moves at a fixed rate with respect to the proximal joint, much like the motion of a
human finger. One of the fingers is stationary relative to the palm, while the other two can move
radially around the palm in unison. This degree of freedom is term the fingerspread. The hand
has ten degrees of freedom in total coming from the six global translation and rotation degrees, in
conjunction with the three individual finger joints, and the fingerspread. While the two joints on the
fingers are constrained, each finger has a torque redirection mechanism to transfer all force to the
distal joint once the proximal link has made contact. This mechanism, called breakaway, induces
stronger grasps by allowing each finger to continue curling around an object even after the proximal
link has made contact.

The score function s for this problem is log grasp metric, and the grasp chosen for a given
space of grasps Yx for grasping object x is given by a grasp planner which implements y∗ =
arg maxy∈Yx

exp{s(x, y)}.

3.3 Grasp demonstration

We discretize the space of grasp candidates in a way similar to that described in [11]. We define
a preshape to be a configuration of the hand at a distance from the surface of the object. Given a
preshape we run a simple grasp controller which moves the hand toward the object along an approach
direction until it is a particular standoff distance away from the first collision with the object. At that
point we close each of the fingers around the object implementing breakaway as described above.2

We are provided the approach direction and we orient the palm normal to this direction. The resulting
free degrees of freedom consist of a standoff parameter and preshape parameters, namely the roll of
the hand around the axis of approach, and the fingerspread. This gives us a three-dimensional space
of grasp parameters (roll, fingerspread, standoff) which we discretize. We chose steps of size π/24

2Since there may be occlusions (e.g. appendages in our case) that we want to avoid during the approach,
in our implementation we actually curl in the fingers to their stopping point, move the hand forward until it is
inside the object, open the fingers entirely, and then back the hand out of the object until it is at a particular
standoff distance from the last collision point before closing the fingers around the object.



to discretize the roll and fingerspread in the ranges (−π, π] and [−π/24, π/2], respectively, giving
48 roll points and 13 fingerspread points. That combined with four standoff values in increments of
0.01 in the range [0, 0.04] gives a total of 48× 13× 4 = 2, 496 distinct grasp parameters.

Grasp examples were demonstrated in simulation by manually moving through the space of grasp
parameters and selecting a setting which produces a good grasp. Force closure was explicitly not
evaluated for these demonstrated grasps since a number of the grasps chosen by the trainer are form
closure grasps that cage the object. A total of 27 training examples were generated in this way
from a set of animal-like object models from the Princeton Shape Database3 by varying approach
direction and object scale. The various protrusions of the models (legs, antennae, fins, beaks) make
them particularly challenging for grasping.

3.4 Features and loss function

To demonstrate the versatility of the learning algorithm we chose a relatively simple set of features
that describe locally the shape of the object beneath each of the three fingertips and beneath the
palm.

Let p and v be the point and direction of interest. We shoot a set of n rays R = {ri}ni=1 from
the point p in a distribution of directions around v and extract from the collision points {ci}ni=1
and normals at those points {ui}ni=1 a set of features. The first elements of the feature vector are
inversely correlated to the distance to collision: exp{−λ‖ci − p‖}. In this way the feature elements
are bounded between 0 and 1, and rays that do not collide receive a value of 0. The second set of
feature elements are computed as a projection of the distribution of the vectors formed by combining
the contact point with the contact normal wi = [ci;ui] onto the space of Gaussians with diagonal
covariance. This is simply computed by finding the vectors of means and standard deviations of the
set {wi}ni=1. These values are appended to the feature vector.

These ray features are computed for each finger and the palm and are then combined into a sin-
gle vector representing the local relation between the hand and the object. A preprocessing step
standardizes the features and then whitens them. The whitening step is implemented by perform-
ing PCA, keeping top 10 component projections, and normalizing their values by dividing by the
standard deviation (latent value) along the component.

These features were used primarily to show that the algorithm produces reasonable results even
when using a very simple set of features. There is a large amount of information which may be
important in grasp prediction that these features do not account for. Two of the most obvious of
these are torque produced by the object at the grasp point (dependent on both the mass of the object
and the center of mass relative to the grasp point), as well as local properties of the object such as
structural integrity and surface friction. An example of how the lack of structural integrity informa-
tion can affect generalization is shown in the bottom row of Figure 5. Humans have an bias toward
avoiding the fins of a shark or fish when grasping because of their flexibility. However, without
representing that bit of information in the feature set, the learned system utilizes the flat surfaces
of the fins as though the shark were a rigid statue. Additionally, we note that a better candidate for
representing the distribution of normals described above is to use wrench coordinates, which are
used in computations of force volumes and force closure measures.

The loss function we used for this experiment measured the physical discrepancy between the final
configurations produced by the simple controller. This is implemented as the minimum distance
matching between points in the fingertips of the example configuration and corresponding points in
the predicted configuration. Specifically, let p1, p2, and p3 be points in the three fingertips of the
example configuration y and p′1, p′2, and p′3 be corresponding points in the fingertips of the predicted
configuration y′. Let Π be the set of all permutations of the set of indices S = {1, . . . , 3}, and
denote a particular permutation as a mapping π : S → S. We define the loss function as

L(y, y′) = min
π∈Π

3∑
i=1

|pi − pπ(i)|. (9)

3http://shape.cs.princeton.edu/benchmark/



This gives low loss to configurations that are similar despite having vastly differing grasp parameters
due to symmetries in the hand, while still giving high loss to configurations that are physically
different.

3.5 Generalization

For each training example, we trained on the other 26 examples and used the final grasp metric to
predict a grasp for the held out example. A single hidden layer neural network with 3 sigmoidal
hidden units and a linear output was used as the weak learnerH. Because of the variability in neural
network training with random initialization, for each boosting iteration, we trained an ensemble of
10 of these base learners by simply averaging the functions resulting from 10 separate trainings of
the neural network on the same data set. We ran 10 iterations of scaled conjugate gradient to train
each neural network.

Figure 4 displays renderings of the resulting grasp prediction (top row) along side the example grasp
the trainer would have chosen for the corresponding approach direction (bottom row). We emphasize
that these are generalization results and that the system was trained without knowledge of the grasp
chosen by the trainer for these holdout examples. In particular, some of the grasp predictions are
effectively the same but rotated when object symmetries make the grasps non-unique. Occasionally,
the system predicts a grasp that is not stable. This is because of the limited number of examples
and a lack of task-oriented reward function. The primary goal of imitation learning in this setting,
however, is to produce a grasp prediction policy that is in the neighborhood of a good policy so that
a reinforcement learning algorithm can be applied effectively to directly optimize this task-oriented
reward function.

The top row of figure 5 demonstrates predicted grasps for the same object generalized to various
approach directions. The prediction is fast and can be easily used bootstrap a high level planner that
chooses an approach direction based on obstacles in the workspace and the kinematics of the arm.

4 Conclusions and future work

Imitation learning in many robotic applications can be naturally posed as a large-scale multiclass
classification problem. In this paper, we demonstrated the effectiveness of recently developed func-
tional gradient techniques for optimizing structured-margin multiclass classification machines by
applying them to two complex imitation learning problems. We are working on making the cur-
rently brute-force search over possible actions more efficient: as the dimensionality of action spaces
rises, we expect it will be necessary to consider more refined optimization procedures.
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